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Debashish Chowdhuryt 
Institute fur Theoretische Physik, Univenitat zu Koln, Zulpicher Strasse 77, D-5000 Koln 
4 I ,  West Germany 
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Abstract. We introduce the concept of a spiral growing self-avoiding walk (SGSAW) by 
imposing Privman's spiralling constraint on the growing self-avoiding walk introduced by 
Majid et a/ and Lyklema and Kremer. We study the critical properties of the SGSAW using 
Monte Carlo simulation. The exponent Y associated with the average radius of gyration, 
(SN) ,  is 0.8. On the other hand, the critical exponent U, associated with the end-to-end 
distance, (RN), is much less than Y. The latter is in sharp contrast to the result Y = v, for 
the usual SAW. Directed GSAWS are shown to behave like directed usual SAWS. 

Recent advances in the theory of self-avoiding walks (SAW) have taken place along 
two complementary lines. Firstly, the underlying mysteries of usual SAW ( USAW) have 
been unveiled and, secondly, several new types of SAW, for example directed SAW 

(Chakrabarti and Manna 1983, Cardy 1983, Redner and Majid 1983, Szpilka 1983), 
spiral SAW (Privman 1983, Redner and de Arcangelis 1983, Joyce '1984, Blote and 
Hilhorst 1984, Whittington 1984, Guttman and Wormald 1984), true SAW (Amit er al 
1983, Obukhov and Peliti 1983, Pietronero 1983, Obukhov 1984, Family and Daoud 
1984), growing SAW (Majid er al 1984, Lyklema and Kremer 1984), have been intro- 
duced. Some of these walks are yet to be realised experimentally. However, their 
study remains interesting and worthwhile because each of these walks exhibits univer- 
sality. This letter is a step along the latter line of development. 

It is usually believed that both the end-to-end distance, KN, and the radius of' 
gyration, SN, of an N-step SAW exhibit identical critical behaviour. This has also been 
proved by Monte Carlo simulation of USAW (Rapaport 1985a, b). However, we shall 
show in this letter that for the new type of walk introduced here the exponents for 
RN and SN are quite different from each other. The exponent associated with SN, 
rather than that associated with RN, is a measure of the compactness of the walk. 

Imposing a spiralling constraint (Privman 1983) on a USAW on a square lattice 
leads to a spiral SAW whose critical behaviour turns out to be quite different from that 
of the USAW. In this letter we show analogously that the imposition of the same 
spiralling constraint on a growing SAW (GSAW) on a square lattice leads to a critical 
behaviour different from those of both GSAW and sprial SAW. For obvious reasons, 
the new type of walk introduced in this letter will be called a spiral growing self-avoiding 
walk (SGSAW). Its critical behaviour is studied using Monte Carlo simulation of N-step 
walks up to N = 100 and averaging over a large number of configurations for each 
fixed value of N on a CDC Cyber 76 scalar computer. 
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First we explain GSAW, the spiralling constraint and SGSAW in more detail. In a 
GSAW the walker distinguishes between the sites already visited and those not visited 
so far in choosing his next host site. Let us call the sites already visited the ‘closed 
sites’ (the doors of these hosts are closed to the walker) and those not already visited 
the ‘open sites’. Then the probability, pi, to jump onto the ith nearest-neighbour open 
site is given by p i  = l/(number of nearest-neighbour open sites). However, if the walker 
falls into a trap where he is surrounded by closed sites the walk is to be terminated. 
Thus a GSAW apparently looks very similar to an USAW; in fact, the same configurations 
appear in both. However, USAW and GSAW have drastically different critical behaviours 
because of the difference in the statistics of the corresponding configurations. The 
spiralling constraint is a constraint on the bond angles-the walker can either proceed 
along the same direction as that of the preceding step or can take a left turn, but a 
right turn is forbidden. The imposition of the latter constraint on the GSAW on a square 
lattice leads to the SGSAW. 

Now we summarise the method of computation. On a square lattice one of the 
four nearest neighbours of the current site is chosen randomly. If the site so chosen 
turns out to be one of the closed sites a new random number is called. This procedure 
takes the property of GSAW into account. Using this procedure we thus generate a 
large number of GSAW configurations (more than lo5 configurations for each N up to 
N =  160). Then averaging the square of the end-to-end distance p’, over all these 
configurations and assuming the simple scaling form 

(&)a N2”g 

for large N, we estimate vg=0.67 for GSAW. This value is in good agreement with 
vg = 0.67 obtained by Majid et al (1984) from Flory-type arguments as well as Monte 
Carlo simulation and also with vg=0.68*0.01 computed by Lyklema and Kremer 
(1984) from exact enumeration. Next, we impose the spiralling constraint on the GSAW. 

Moreover, the lattice sites are placed in a one-dimensional array by imposing a helical 
boundary condition on the square lattice. Each of the walks starts from the centre of 
the square and the distance of the end point of an N-step walk from the centre is 
measured in the same fashion as done by Pandey et a1 (1984) for a random walk on 
percolation clusters. For smaller walks (up to N = 25) lo5 SGSAW configurations are 
generated for each N. For longer walks, we run the CDC Cyber computer for two 
hours of CP time for each N. Then we average the quantity of interest, namely the 
end-to-end distance squared, RL, over all those configurations, thereby obtaining (Rk). 
The radius of gyration. SN, of any walk is defined by 

s’, = ( ri - rCM)’ 
I 

where ri are the positions of the lattice sites visited by the walker in an N-step walk 
and rCM is the position of the corresponding centre of mass. The average (S , )  for 
given N is computed in a manner very similar to that followed for the computation 
of (R’,), except that the lattice sites are placed in a square array and the distance is 
measured in the usual way rather than in the manner of Pandey et a1 (1984). 

It is well known that getting a USAW of, say, N = 100 in Monte Carlo simulations 
is very difficult because of attrition. In the course of the present work we found it 
much easier to generate GSAW than an equal number of USAW of the same length N. 
On the other hand, generating a SGSAW takes much longer than a GSAW of the same 
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N. For example, only about 100 configurations of a SGSAW with N = 100 compared 
with 2 x IO5 configurations of a GSAW of N = 160 could be generated in two hours of 
CP time. Because of the bad statistics of the data beyond N = 80 we present only the 
data up to N = 80 in this letter. 

Now we come to the analysis of the data. If the average radius of gyration ( S , )  
were simply proportional to N", the gradient of the plot of In (S , )  against In N would 
give the magnitude of the exponent U. However, our data could not be fitted satisfac- 
torily to such a simple scaling form over the whole range of N investigated; the plot 
of In(SN) against In N turns out to be curved (see figure l (a)) .  We believe that the 
deviation of ( S , )  from linearity for smaller values of N arises from finite-N effects. 
Plotting the gradient v(N) of the latter curve for various values of N against 1 / N  
(figure 1 ( b ) )  and extrapolating to 1/ N + 0, we get v = 0.8. However, the gradient vR 
of the plot of In(&) against In N (see figure l ( a ) )  is much smaller than v. It is well 
known (Rapaport 1985a, b) that v = vR for USAW. Figure l ( a )  clearly demonstrates 
the breakdown of the latter equality for SGSAW, at least for the size range studied here. 

, I I I I 

16) - 
- 0 0 O- 

- o o  O 

0 0  
0 0  

0 

- 0 moo 

o.61 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 

N I I N  

Figure 1. ( a )  Log-log plot of average radius of gyration, S, (O),  and the end-to-end 
distance, R, ( X ) ,  against the number of steps ( N )  of a SGSAW. The error bars for the 
data for all N are of the order of the symbol size, except for N = 80 where the error bar 
is twice as large. ( b )  Effective exponent v ( N )  plotted against I/N. 

We have also studied directed GSAW on a square lattice where the walker is allowed 
to move along both the fx axes, but only along the -y axis, motion along the +y 
direction being forbidden. This walk is very similar to a directed SAW (Chakrabarti 
and Manna 1983); the directive contraint is imposed on USAW in the latter whereas 
the some constraint is imposed on GSAW in the former. The exponent v of a directed 
GSAW turns out to be identical to that of a directed USAW, i.e., v, =+ and vy = 1. This 
equivalence arises because the motion along the y axis is nothing but a simple forward 
motion and that along the x axis is a simple unbiased random walk for the cases of 
both a directed SAW and a directed GSAW (Privman 1985). 

In conclusion, we have introduced a new self-avoiding walk, namely the SGSAW, by 
imposing the spiralling constraint on the GSAW. Using Monte Carlo simulation, the 
SGSAW is shown to belong to a new universality class for which v # vR. 

It is my great pleasure to thank D Stauffer and B K Chakrabarti for useful discussions 
and suggestions. I would also like to thank D Stauffer for a critical reading of the 
manuscript. 
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Note added in prm& Some error in our computation of the radius of gyration, SN, came to our notice after 
the acceptance of this work for publication. However, the data for the end-to-end distance, RN, were correct. 
First of all, now (S,) < (RN) for all N investigated (5  L N S 100). Secondly, the correct slope of the In (S,) 
against In N curve is a decreasing function of N, with v(  N)==0.67 at N = 5  and -0.38 at N -  100. 
Unfortunately, N = 100 seems to be not sufficiently large to reflect the true critical behaviour of SOSAW in 
the limit N + m. 
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